GM0204: Universal Hybrid Inverter Driver Interface for VOLTTRONTM Enabled DER Power Electronics Applications

2017 Building Technologies Office Peer Review

Energy Efficiency & Renewable Energy

Madhu Chinthavali, chinthavalim@ornl.gov
Oak Ridge National Laboratory

Project Summary

Timeline:

Start date: FY16

Planned end date: FY19

Key Milestones

 Emulate functionality of advanced VOLTTRON™ platform to validate the control architecture; 12/30/2016

- 2. Validate functionality of the hybrid interface using a commercial inverter; 12/30/2017
- 3. Test the advanced VOLTTRON™ platform using the developed universal hybrid inverter driver interface; 12/30/2018

Budget:

Total Project \$ to Date: \$350K

• DOE: \$350K

Cost Share: \$0

Total Project \$: \$1.35M

• DOE: \$1.35M

Cost Share: \$0

Key Partners:

AgileSwitch
(PE Vendor)

ROHM
(Electronics Vendor)

Project Outcome:

This project will address needs for the Open-architecture control platforms for transactive energy ready buildings [DOE BTO MYPP Pages 98-99].

The project will assess the impact that the VOLTTRONTM platform can have on the grid-tied inverters for transactive control.

Purpose and Objectives

Challenges

- No open-source transactional network software platform for grid-tied inverters
- Legacy hardware and software solutions
 - Vendor base software cannot be modified for providing advance grid functions
 - Commercial inverters need an hardware interface for interacting with opensource platforms (VOLTTRONTM)

Gaps

- No power electronics agent in VOLTTRONTM to control inverters
- No grid service agents that allow them to easily communicate with physical inverter and other resources

Renewable energy integration into building based on VOLTTRON™ platform

Purpose and Objectives (continued)

Target Market/Audience

- Consumer smart grid interface market for DER
 - PV
 - Energy storage
 - Wind

Impact of Project

Outputs: Enabling near real-time control and integration of renewable-energy-based power electronics inverters in green buildings by developing a universal driver interface for VOLTTRONTM platform

Near-term

 Implementing VOLTTRONTM based power electronics system for building integrated renewable energy

Long-term

 Optimizing and exploring VOLTTRON[™] functionality in energy management for large-scale electrical grid

 Providing design guidelines for industry to manufacture their inverters with proper interfaces for VOLTTRONTM platform

Approach

Advanced VOLTTRON™ Control Platform(Software)

- New Power Electronics Agent Interface
- Control strategy decision maker
- Inverter status monitoring
- Communicate with other control platforms

Universal Hybrid Driver Interface (Hardware)

- Control strategy executor
- Online inverter health monitoring
- Communication interface between RES and VOLTTRONTM

Summary of Tasks and Accomplishments FY16 - FY17 Q2

Advanced VOLTTRON[™] Control Platform

Accomplishments:

- Completed the overall hardware and software requirements for VOLTTRONTM and hybrid driver interface
- Developed <u>IEEE 1547</u> and <u>IEEE 2030</u> functions for grid-tied operation of the inverter
- Simulated the control architecture to realize the functions
- Emulated the functionality of advanced VOLTTRONTM platform to validate the communication and overall architecture

Universal Hybrid Inverter Driver Interface

Accomplishments:

- Designed and tested advanced gate drive for short circuit and cross-conduction protection
- Completed the testing of the hybrid interface with basic functions (version 1.0)
- Evaluated a commercial inverter and identified the technical gaps
 SMART inverter operation
- Simulation of the hybrid interface functions and their impact on the system performance

Progress and Accomplishments

Detailed View of Overall Inverter Architecture

- Agent Inverter Comms converters the OMQ schema to UDP for communication to the DSP board through Ethernet
 - This communication consists for inverter control states and setpoints and inverter control status and measurements
- Agent Outside Comms converts the OMQ schema to Mobus or other industry interface for communications by optimizer
 - This communication allows for any open-source communication interface to be constructed
- DSP provides all the direct control commands to the switch modules

Progress and Accomplishments

Basic Layout of VOLTTRONTM **Inverter Agent**

- VOLTTRONTM deployed on computer or a Raspberry Pi will act as interface agent for communications to the outside
- Communication to the information exchange bus utilizes developed schema that incorporates class structure for inclusion of different inverter based resources such as:
 - Solar
 - Energy Storage
 - Easily Expandable to other...

Progress and Accomplishments

VOLTTRON™ Communication Emulation with Inverter Interface

Inverter Agent (Communicates Via Message Bus and Ethernet)

Inverter Agent Tester (Communicates Via Message Bus)

Hybrid Interface Hardware (version 1.0)

Advanced functions

- Gate drive channels with galvanic isolation
- High sinking and sourcing current
 (up to ±30 A peak, ±8 A continuous)
- Active miller clamping/crosstalk suppression
- Fault signal output function
 (adjustable output holding time)
- Undervoltage lockout (UVLO) function
- Thermal protection function
- Short circuit protection function (adjustable reset time)
- High-precision real-time voltage and current sensing and processing
- Over-/low- AC/DC voltage/current protections
- Differential PWM signal for noise elimination
- Ethernet/CAN/RS-232 Communications

ORNL Universal Interface Board

Signal conditioning and processing

Logic translation and level shifter

Voltage/current isolation and sensing

ORNL Single Phase Inverter

IEEE 1547 and IEEE 2030 Inverter Functions

Function	Role of proposed hybrid interface	Simulation verified	Coding verified				
Grid-tied operation	Adaptive grid voltage tracking						
PQ/PV/FQ mode	Power flow management		✓				
Islanding operation	Reconstruct a virtual grid						
Anti-islanding protection	Seamless mode transfer through islanding detection	✓	✓				
Fault ride through	Fault tolerant control	✓					

Inverter configuration

Technical Accomplishments- TEST BED

- Completed the integration of the universal hybrid interface and the single phase inverter developed at ORNL
- Completed the test bed for evaluation of the hybrid inverter interface

DC POWER SOURCE **EMULATING DER**

INVERTER WITH THE HYBRID **INTERFACE**

VOLTTRON™ EMULATOR ON A COMPUTER

> U.S. DEPARTMENT OF **Energy Efficiency &** Renewable Energy

GRID

- The simulations performed in FY16 were verified on the test bed
- The grid-tied operation was achieved on the universal hybrid driver interface prototype with closed loop control
- The active power steps up from 50 W to 150 W and the reactive power is at zero

AC voltage: 50V/60Hz (peak); DC voltage: 100V; Power: 150W

Technology Gaps

- Ethernet based solution for DSP controller boards
 - No Ethernet module in the DSP boards available
 - No official recommendation solution from commercial products
 - No mature demonstration from third parties

Solutions

- Scheme 1: Commercial Serial-to-Ethernet module
 - Too expensive and not easy to combine into the DSP interface board due to the large size

Much cheaper chip based design, easy to combine into the DSP interface board

ORNL proposed solution

- Use the cheaper hardware Ethernet chip from WIZnet and integrate into the interface board
- Develop custom software for communication protocol interface in the DSP

^[2] Source: http://www.digikey.sk/catalog/en/partgroup/mikroeth100-board/56675 [3] Source: http://www.digikey.com/product-detail/en/wiznet/W5500/1278-1021-ND/4425702

Energy Efficiency & Renewable Energy

Scheme 2^[2]

ORNL solution[3]

ENERG

Project Integration and Collaboration

Update on Vendor Discussion

AgileStack[™]-Full Version

Barriers:

- Incompatible communication protocol
- Incompatible hardware interface for digital version

Solution:

- Vendor will send analog inverter interface
- ORNL will integrate the universal hardware interface into the commercial interface demonstrate the functionality

Next Steps and Future Plans

Advanced VOLTTRONTM Control Platform

- Finalize VOLTTRON™ platform and its associated configurations
- Develop the software to integrate the control strategy in VOLTTRONTM platform
- Test the advanced VOLTTRONTM platform (with the PE agent) using the universal hybrid inverter driver interface (Version 1.0) developed in FY16

Universal Hybrid Inverter Driver Interface

- Design and test communication interface (Ethernet based)
- Design the hybrid interface hardware and validate the advance functions
 - Validate the functionality of the hybrid interface using a commercial
- inverter

Publications

Pending Invention Disclosure

- Title: Adaptive DC-BUS Stabilizer for Building Integrated Renewable Energy Sources
- Inventor: Rong Zeng, Zhiqiang Wang, Madhu Sudhan Chinthavali
- Affiliation: Oak Ridge National Laboratory

ECCE 2017 Conference

- Paper ID: EC-0417
- Title: An adaptive DC-bus stabilizer for single-phase grid-connected renewable energy source system
- Authors: Rong Zeng, Zhiqiang Wang, Madhu Sudhan Chinthavali
- Affiliation: Oak Ridge National Laboratory

REFERENCE SLIDES

Project Budget

Project Budget: \$ 1.35 M

Variances: \$150 K less than planned budget

Cost to Date: \$ 280 K

Additional Funding: None

Budget History										
April – FY 2016 (past)			2017 rent)	FY 2019 –March (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$350 K	0	\$500 K	0	\$ 500 K	0					

Project Plan and Schedule

Project Schedule												
Project Start: FY16		Completed Work										
Projected End: FY18		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2016 FY2017 FY					FY2	2018				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Task 1 - Project Coordination												
Task 2.1: Identify basic hardware and software requirements												
Task 2.2: Hardware and software configuration												
Task 2.5: Core control algorithm implementation												
Task 2.6: System-level control debugging with virtual power electronics load												
Task 3.1: Determine the specification of basic and advanced driving functions and schemes												
Task 3.2: Design and fabricate circuit board with all necessary sub-interface elements												
Task 3.3: Develop low-power interface with embedded digital controller												
Task 3.4: Implement determined driving functions and schemes into low-power interface												
Task 3.5: Electrical testing of universal driver interface using various commercial power semiconductor modules	;											
Task 4.1: Determine the specification of DER-based power electronics inverters												
Task 4.2: Design necessary feedback interface												
Task 4.3: Power stage development and assembling												
Task 4.4: Static and dynamic characterization of power semiconductors												
Task 4.5: Electrical testing of inverters in single phase and multiphase using commercial driver interface												
Task 5.1: Integrate developed universal driver interface with power electronics inverters												
Task 5.2: Integrate driver interface and inverters with VOLTTRON™ platform												
Task 5.3: Offline static testing of inverters using VOLTTRON™ platform and universal driver interface												